Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Environ Toxicol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644733

ABSTRACT

Cadmium (Cd) is a pervasive environmental contaminant and a significant risk factor for liver injury. The present study was undertaken to evaluate the involvement of ferroptosis and neutrophil extracellular traps (NETs) in Cd-induced liver injury in Nile tilapia (Oreochromis niloticus), and to explore its underlying mechanism. Cd-induced liver injury was associated with increased total iron, malondialdehyde (MDA), and Acyl-CoA synthetase long-chain family member 4 (ACSL4), together with reduced levels of glutathione, glutathione peroxidase-4a (Gpx4a), and solute carrier family 7 member 11 (SLC7A11), which are all hallmarks of ferroptosis. Moreover, liver hyperemia, neutrophil infiltration, increased inflammatory factors and myeloperoxidase, as well as elevated serum DNA content in Cd-stimulated Nile tilapia suggested that a considerable number of neutrophils were recruited to the liver. Furtherly, in vitro experiments demonstrated that Cd induced the formation of NETs, and the possible mechanism was related to the generation of reactive oxygen species and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, along with the P38 and extracellular regulated protein kinase (ERK) signaling pathways. We concluded that ferroptosis and NETs are the critical mechanisms contributing to Cd-induced liver injury in Nile tilapia. These findings will contribute to Cd toxicological studies in aquatic animals.

2.
Poult Sci ; 103(6): 103717, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38643746

ABSTRACT

Gliotoxin (GT) belongs to the epipolythiodioxopiperazine (ETP) family, which is considered a crucial virulence determinant among the secondary metabolites produced by Aspergillus fumigatus. The metabolites are commonly found in food and feed, contributing to the invasion and immune escape of Aspergillus fumigatus, thereby posing a significant threat to the health of livestock, poultry, and humans. Heterophil extracellular traps (HETs), a novel form of innate immune defense, have been documented in the chicken's innate immune systems for capturing and eliminating invading microbes. However, the effects and mechanisms of GT on the production of duck HETs in vitro remain unknown. In this study, we first confirmed the presence of HETs in duck innate immune systems and further investigated the molecular mechanism underlying GT-induced HETs release. Our results demonstrate that GT can trigger typical release of HETs in duck. The structures of GT-induced HETs structures were characterized by DNA decoration, citrullinated histones 3, and elastase. Furthermore, NADPH oxidase, glycolysis, ERK1/2 and p38 signaling pathway were found to regulate GT-induced HETs. In summary, our findings reveal that gliotoxin activates HETs release in the early innate immune system of duck while providing new insights into the immunotoxicity of GT towards ducks.

3.
Animal Model Exp Med ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477441

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is one of the most common malignant brain tumors that mainly affect children. Various approaches have been used to model MB to facilitate investigating tumorigenesis. This study aims to compare the recapitulation of MB between subcutaneous patient-derived xenograft (sPDX), intracranial patient-derived xenograft (iPDX), and genetically engineered mouse models (GEMM) at the single-cell level. METHODS: We obtained primary human sonic hedgehog (SHH) and group 3 (G3) MB samples from six patients. For each patient specimen, we developed two sPDX and iPDX models, respectively. Three Patch+/- GEMM models were also included for sequencing. Single-cell RNA sequencing was performed to compare gene expression profiles, cellular composition, and functional pathway enrichment. Bulk RNA-seq deconvolution was performed to compare cellular composition across models and human samples. RESULTS: Our results showed that the sPDX tumor model demonstrated the highest correlation to the overall transcriptomic profiles of primary human tumors at the single-cell level within the SHH and G3 subgroups, followed by the GEMM model and iPDX. The GEMM tumor model was able to recapitulate all subpopulations of tumor microenvironment (TME) cells that can be clustered in human SHH tumors, including a higher proportion of tumor-associated astrocytes and immune cells, and an additional cluster of vascular endothelia when compared to human SHH tumors. CONCLUSIONS: This study was the first to compare experimental models for MB at the single-cell level, providing value insights into model selection for different research purposes. sPDX and iPDX are suitable for drug testing and personalized therapy screenings, whereas GEMM models are valuable for investigating the interaction between tumor and TME cells.

4.
Dev Comp Immunol ; 153: 105107, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38036049

ABSTRACT

Artificial insemination has been a predominant technique employed in goat husbandry for breeding purposes. Subsequent to artificial insemination, sperm can elicit inflammation in the reproductive tract, resulting in substantial the accumulation of neutrophils. Recognized as foreign entities, sperm may become entrapped within neutrophil extracellular traps (NETs) released by neutrophils, thereby exploiting their properties of pathogen elimination. Deoxyribonuclease I (DNase I), which is known for disintegrating NETs and causing loss of function, has been utilized to ameliorate liver and brain damage resulting from NETs, as well as to enhance sperm quality. This study investigated the mechanism of sperm-induced NETs and further explored the impact of DNase I on NETs. Sperm quality was evaluated using optical microscopy, while the structure of NETs was observed through immunofluorescence staining. The formation mechanism of NETs was examined using inhibitors and PicoGreen. The findings revealed that sperm induced the formation of NETs, a process regulated by glycolysis, NADPH oxidase, ERK1/2, and p38 signaling pathways. The composition of NETs encompassed DNA, citrullinated histone H3 (citH3), and elastase (NE). DNase I protects sperm by degrading NETs, thereby concurrently preserving the integrity of plasma membrane and motility of sperm. In summary, the release of sperm-induced NETs leads to its damage, but this detrimental effect is counteracted by DNase I through degradation of NETs. These observations provide novel insights into reproductive immunity in goats.


Subject(s)
Extracellular Traps , Male , Animals , Extracellular Traps/metabolism , Goats , Semen , Neutrophils , Spermatozoa , Deoxyribonuclease I/metabolism , Deoxyribonuclease I/pharmacology
5.
J Oleo Sci ; 72(11): 1027-1035, 2023.
Article in English | MEDLINE | ID: mdl-37914264

ABSTRACT

Acute liver injury (ALI), posing a serious threaten to our life, has emerged as a public health issue around the world. ß-carotene has plenty of pharmacologic effects, such as anti-inflammatory, antioxidant, and antitumor activities. In this study, we focused on studying the protective role and potential molecular mechanisms of ß-carotene against D-galactosamine (D-GalN) and lipopolysaccharide (LPS) induced ALI. Our results indicated that ß-carotene pretreatment effectively hindered abnormal changes induced by LPS/D-GalN in liver histopathology. Meanwhile, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were downgraded with ß-carotene pretreatment. ß-carotene pretreatment also decreased malondialdehyde content and myeloperoxidase activity, increased glutathione peroxidase and superoxide dismutase levels, and reduced the levels of tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) in liver tissues. Further investigations found that ß-carotene mediated multiple signaling pathways in LPS/D-GalN-induced ALI, inhibiting NF-κB and MAPK signaling and upregulating the expression of Nrf2 and HO-1 proteins. All findings indicate that ß-carotene appears to protect mice against LPS/D-GalN induced ALI by reducing oxidative stress and inflammation, possibly via regulating NF-κB, MAPK, and Nrf2 signaling.


Subject(s)
Chemical and Drug Induced Liver Injury , NF-kappa B , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , beta Carotene/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Galactosamine/toxicity , Galactosamine/metabolism , Lipopolysaccharides , Liver/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Poult Sci ; 102(10): 102946, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542939

ABSTRACT

Zearalenone (ZEA) is produced mainly by fungi belonging to genus Fusarium in foods and feeds. Heterophil extracellular traps (HETs) are a novel defense mechanism of chicken innate immunity involving activated heterophils. However, the conditions and requirements for ZEA-triggered HET release remain unknown. In this study, immunostaining analysis demonstrated that ZEA-triggered extracellular fibers were composed of histone and elastase assembled on DNA skeleton, showing that ZEA can induce the formation of HETs. Further experiments indicated that ZEA-induced HET release was concentration-dependent (ranging from 20 to 80 µM ZEA) and time-dependent (ranging from 30 to 180 min). Moreover, in 80 µM ZEA-exposed chicken heterophils, reactive oxygen species (ROS) level, catalase (CAT), superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and glutathione (GSH) content were increased. Simultaneously, ZEA at 80 µM activated ERK and p38 MAPK signaling pathways by increasing the phosphorylation level of ERK and p38 proteins. Pharmacological inhibition assays revealed that blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, ERK, and p38 mitogen-activated protein kinase (MAPK) reduced ZEA-induced ROS levels but had no impact on HET formation. Furthermore, immunostaining analysis indicated that the heterophil underwent the formation of autophagosome based on being stained with LC3B. The pharmacological inhibition assays demonstrated that rapamycin-, wortmannin-, and 3-methyladenine (3-MA)-treatments modulated ZEA-triggered HET formation, indicating that heterophil autophagy played a key role in ZEA-induced HET formation. Further studies on energy metabolism showed that inhibition of lactate/glucose transport, hexokinase-2 (HK-2), fructose-2,6-biphosphatase 3 (PFKFB3) in glycolysis abated ZEA-induced HETs, implying that glycolysis was one of the factors influencing the ZEA-induced HET formation. Besides, inhibition of the peptidylarginine deiminase (PAD) enzyme and P2X1 significantly reduced the ZEA-induced HET formation. In conclusion, we demonstrated that ZEA-triggered HET formation, which was associated with glycolysis, autophagy, PAD enzyme, and P2X1 receptor activation, providing valuable insight into the negative effect of ZEA on chicken innate immunity.


Subject(s)
Extracellular Traps , Zearalenone , Animals , Extracellular Traps/metabolism , Reactive Oxygen Species/metabolism , Chickens/metabolism , Zearalenone/toxicity , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminases/pharmacology , Autophagy , Glycolysis
7.
J Agric Food Chem ; 71(28): 10761-10772, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37392437

ABSTRACT

Deoxynivalenol (DON), one of the most prevalent mycotoxins found in food and feed, can cause gastrointestinal inflammation and systemic immunosuppression, presenting a serious hazard to human and animal health. Quercetin (QUE) is a plant polyphenol with anti-inflammatory and antioxidant properties. In this research, we investigated the potential function of QUE as a treatment for DON-induced intestinal damage. Thirty male specific-pathogen-free BALB/c mice were randomly allocated to treatment with QUE (50 mg/kg) and/or DON (0, 0.5, 1, and 2 mg/kg). We found that QUE attenuated DON-induced intestinal damage in mice by improving jejunal structural injury and changing tight junction proteins (claudin-1, claudin-3, ZO-1, and occludin) levels. QUE also suppressed DON-triggered intestinal inflammation by inhibiting the TLR4/NF-κB signaling pathway. Meanwhile, QUE decreased the oxidative stress caused by DON by enhancing the concentrations of SOD and GSH, while diminishing the contents of MDA. In particular, QUE reduced DON-induced intestinal ferroptosis. DON-induced intestinal damage elevated TfR and 4HNE levels, along with transcription levels of ferroptosis-related genes (PTGS2, ACSL4, and HAMP1) while diminishing mRNA levels of FTH1, SLC7A11, GPX4, FPN1, and FSP1, all of which were reversed by QUE treatment. Our findings imply that QUE alleviates DON-induced intestinal injury in mice by inhibiting the TLR4/NF-κB signaling pathway and ferroptosis. In this study, we elucidate the toxicological mechanism of DON, provide a basic foundation or theory for future DON prevention and treatment, and explore strategies to prevent and alleviate DON's hazardous effects.


Subject(s)
Ferroptosis , Quercetin , Humans , Animals , Mice , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Inflammation/drug therapy , Inflammation/genetics
8.
Toxicol Lett ; 384: 63-72, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37437672

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used nanomaterials with excellent chemical and biological properties. However, their widespread application has led to increased risk to the natural environment and public health. A growing number of studies have shown that ZnO-NPs deposited in target organs interact with internal barriers to trigger injurious responses. The underlying mechanism of ZnO-NPs on the blood-milk barrier dysfunction remains to be understood. Our results revealed that excessive accumulation of ZnO-NPs induced histopathological injuries in the mammary gland, leading to the distribution of ZnO-NPs in the milk of lactating mice. A prominent diffusion of blood-milk barrier permeability marker, albumin-fluorescein isothiocyanate conjugate (FITC-albumin) was observed at cell-cell junction after ZnO-NPs exposure. Meanwhile, ZnO-NPs weakened the blood-milk barrier function by altering the expression of tight junction proteins. The excessive accumulation of ZnO-NPs also induced inflammatory response by activating the NF-κB and MAPK signaling pathways, leading to the dysfunctional blood-milk barrier. Furthermore, we found that ZnO-NPs led to increased iron accumulation and lipid oxidation, thus increasing oxidative injury and ferroptosis in mammary glands. These results indicated that ZnO-NPs weaken the integrity of the blood-milk barrier by directly affecting tight junctions and cellular injury in different ways.


Subject(s)
Nanoparticles , Zinc Oxide , Female , Mice , Animals , Zinc Oxide/chemistry , Milk , Lactation , Tight Junctions/metabolism , Nanoparticles/chemistry
9.
Toxicon ; 230: 107163, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207941

ABSTRACT

Saxitoxin (STX) is a potent shellfish toxin found in freshwater and marine ecosystems which threatens human health by contaminating drinking water and shellfish. The formation of neutrophil extracellular traps (NETs) is a defense mechanism employed by polymorphonuclear leukocytes (PMNs) to destroy invading pathogens, and also plays a critical role in the pathogenesis of various diseases. In this study, we aimed to investigate the role of STX on human NET formation. Typical NETs-associated characteristics were detected from STX-stimulated PMNs using immunofluorescence microscopy. Moreover, NET quantification based on PicoGreen® fluorescent dye revealed that STX triggered NET formation in a concentration-dependent manner, and NET formation peaked at 120 min (with a total time of 180 min) after induction by STX. Intracellular reactive oxygen species (iROS) detection showed that iROS were significantly elevated in STX-challenged PMNs. These findings present insight into the effects of STX on human NET formation and serve as a basis for further investigations of STX immunotoxicity.


Subject(s)
Extracellular Traps , Saxitoxin , Humans , Ecosystem , Shellfish/analysis , Neutrophils
10.
Environ Toxicol ; 38(6): 1372-1383, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880449

ABSTRACT

Methylmercury (MeHg) is a highly poisonous form of mercury and a risk factor for kidney impairment in humans that currently has no effective means of therapy. Ferroptosis is a non-apoptotic metabolic cell death linked to numerous diseases. It is currently unknown whether ferroptosis takes part in MeHg-induced kidney damage. Here, we established a model of acute kidney injury (AKI) in mice by gavage with different doses of MeHg (0, 40, 80, 160 µmol/kg). Serological analysis revealed elevated levels of UA, UREA, and CREA; H&E staining showed variable degrees of renal tubule injury; qRT-PCR detection displayed increased expression of KIM-1 and NGAL in the groups with MeHg treatment, indicated that MeHg successfully induced AKI. Furthermore, MDA levels enhanced in renal tissues of mice with MeHg exposure whereas GSH levels decreased; ACSL4 and PTGS2 nucleic acid levels elevated while SLC7A11 levels reduced; transmission electron microscopy illustrated that the density of the mitochondrial membrane thickened and the ridge reduced considerably; protein levels for 4HNE and TfR1 improved since GPX4 levels declined, all these results implying the involvement of ferroptosis as a result of MeHg exposure. Additionally, the observed elevation in the protein levels of NLRP3, p-p65, p-p38, p-ERK1/2, and KEAP1 in tandem with downregulated Nrf2 expression levels indicate the involvement of the NF-κB/NLRP3/MAPK/Nrf2 pathways. All the above findings suggested that ferroptosis and the NF-κB/NLRP3/MAPK/Nrf2 pathways are implicated in MeHg-induced AKI, thereby providing a theoretical foundation and reference for future investigations into the prevention and treatment of MeHg-induced kidney injury.


Subject(s)
Acute Kidney Injury , Ferroptosis , Methylmercury Compounds , Humans , Mice , Animals , Methylmercury Compounds/toxicity , Kelch-Like ECH-Associated Protein 1/metabolism , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism
11.
Poult Sci ; 102(4): 102511, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805396

ABSTRACT

Fumonisin B1 (FB1), a worldwide contaminating mycotoxin produced by Fusarium, poses a great threat to the poultry industry. It was reported that extracellular traps could be induced by FB1 efficiently in chickens. However, the relevance of autophagy and glycolysis in FB1-triggered heterophil extracellular trap (HET) formation is unclear. In this study, immunostaining revealed that FB1-induced HETs structures were composed of DNA coated with histones H3, and elastase, and that heterophils underwent LC3B-related autophagosome formation assembly driven by FB1. Western blotting showed that FB1 downregulated the phosphorylated phosphoinositide 3-kinase3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin complex 1 (mTORC1) axis and raised the AMP-activated kinase α (AMPKα) activation protein. Furthermore, rapamycin- and 3-Methyladenine (3-MA)-treatments modulated FB1-triggered HET formation according to the pharmacological analysis. Further studies on energy metabolism showed that glucose/lactate transport and glycolysis inhibitors abated FB1-induced HETs. These results showed that FB1-induced HET formation might interact with the autophagy process and relied on glucose/monocarboxylic acid transporter 1 (MCT1) and glycolysis, reflecting chicken's early innate immune responses against FB1 intake.


Subject(s)
Extracellular Traps , Fumonisins , Animals , Chickens , Autophagy , Histones , Glycolysis , Glucose
12.
Invest Ophthalmol Vis Sci ; 64(2): 5, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36729443

ABSTRACT

Purpose: The purpose of this study was to describe genotype-phenotype associations and novel insights into genetic characteristics in a trio-based cohort of inherited eye diseases (IEDs). Methods: To determine the etiological role of de novo mutations (DNMs) and genetic profile in IEDs, we retrospectively reviewed a large cohort of proband-parent trios of Chinese origin. The patients underwent a detailed examination and was clinically diagnosed by an ophthalmologist. Panel-based targeted exome sequencing was performed on DNA extracted from blood samples, containing coding regions of 792 IED-causative genes and their flanking exons. All participants underwent genetic testing. Results: All proband-parent trios were divided into 22 subgroups, the overall diagnostic yield was 48.67% (605/1243), ranging from 4% to 94.44% for each of the subgroups. A total of 108 IED-causative genes were identified, with the top 24 genes explaining 67% of the 605 genetically solved trios. The genetic etiology of 6.76% (84/1243) of the trio was attributed to disease-causative DNMs, and the top 3 subgroups with the highest incidence of DNM were aniridia (n = 40%), Marfan syndrome/ectopia lentis (n = 38.78%), and retinoblastoma (n = 37.04%). The top 10 genes have a diagnostic yield of DNM greater than 3.5% in their subgroups, including PAX6 (40.00%), FBN1 (38.78%), RB1 (37.04%), CRX (10.34%), CHM (9.09%), WFS1 (8.00%), RP1L1 (5.88%), RS1 (5.26%), PCDH15 (4.00%), and ABCA4 (3.51%). Additionally, the incidence of DNM in offspring showed a trend of correlation with paternal age at reproduction, but not statistically significant with paternal (P = 0.154) and maternal (P = 0.959) age at reproduction. Conclusions: Trios-based genetic analysis has high accuracy and validity. Our study helps to quantify the burden of the full spectrum IED caused by each gene, offers novel potential for elucidating etiology, and plays a crucial role in genetic counseling and patient management.


Subject(s)
Eye Diseases , Genetic Testing , Humans , Virulence , Retrospective Studies , Mutation , Pedigree , ATP-Binding Cassette Transporters/genetics , Eye Proteins/genetics
13.
Res Vet Sci ; 154: 59-65, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36463586

ABSTRACT

Ketosis is a metabolic disease of dairy cows in the perinatal period, ß-hydroxybutyrate (ß-HB) is the main component of ketosis. High levels of ß-HB can trigger oxidative stress and inflammatory response in dairy cows, leading to decreased milk yield and multiple postpartum diseases. Forsythin (FOR), the major constituent of the herbal medicine Forsythia, has anti-inflammatory, anti-oxidant, and antiviral effects. FOR was demonstrated to have an antioxidant effect on PC12 cells. However, the effects of FOR on ß-HB-stimulated bovine macrophages (BMs) has not been reported. Thus, the aim of the present study was to investigate the effects of FOR on ß-HB-stimulated BMs. Firstly, the CCK8 test confirmed that FOR (50, 100, 200 µg/mL) has no effect on BMs activity, and we selected these concentrations for subsequent experiments. Secondly, through detecting the oxidation indexes ROS, MDA and antioxidant indexes CAT and SOD, we confirmed the antioxidant effect of FOR on BMs. Next, qRT-PCR confirmed that FOR dramatically reduced the mRNA levels of IL-1ß and IL-6. Furthermore, the western blotting confirmed that FOR observably down-regulated ß-HB-stimulated phosphorylation of p38, ERK and Akt and up-regulated expression of Nrf2, and HO-1. Above results suggested that FOR plays antioxidant effects on ß-HB-induced BMs through p38, ERK and PI3K/Akt, Nrf2 and HO-1 signaling pathways. Therefore, we speculated that FOR may be a potential medicine to alleviate ß-HB-induced inflammatory response and provide a preliminary reference for the research and development of FOR.


Subject(s)
Cattle Diseases , Ketosis , Rats , Female , Cattle , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , NF-E2-Related Factor 2/metabolism , 3-Hydroxybutyric Acid/pharmacology , Oxidative Stress , Signal Transduction , Macrophages/metabolism , Ketosis/metabolism , Ketosis/veterinary , Cattle Diseases/chemically induced , Cattle Diseases/metabolism
14.
Nat Prod Res ; 37(5): 798-802, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35707887

ABSTRACT

This study aimed to investigate the protective effects and mechanisms of myricetin on acute liver failure in mice induced by lipopolysaccharide (LPS)/D-galactosamine (D-Gal). Our results showed myricetin (25, 50 and 100 mg/kg) pretreatment significantly improved the pathological changes of liver tissues, decreased serum ALT and AST (p < 0.001) induced by LPS/D-GalN. Moreover, MDA and MPO levels were reduced (p < 0.001), CAT and SOD activities were increased (p < 0.001) with myricetin (50 and 100 mg/kg) pretreatment. Likewise, inflammatory cytokines TNF-α and IL-6 mRNA in liver tissues were markedly decreased (p < 0.001) by myricetin. Besides, Nrf2 protein expression was drastically elevated (p < 0.001) by myricetin (25, 50 and 100 mg/kg). All these findings imply that myricetin may protect against acute liver failure by suppressing inflammation and regulating oxidative stress via Nrf2 signaling, and that it may be a possible strategy to avoid liver damage.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure, Acute , Mice , Animals , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Chemical and Drug Induced Liver Injury/pathology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , Liver , Inflammation/metabolism , Oxidative Stress , Galactosamine/toxicity , NF-kappa B/metabolism
15.
Vet Parasitol ; 312: 109841, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36427458

ABSTRACT

Giardia duodenalis is an important intestinal protozoan parasite, infections of which are frequently seen in cattle and cause intermittent diarrhea and weight loss in young animals around the world. The release of neutrophil extracellular traps (NETs) is an effector mechanism of neutrophils to fight against invading pathogens including parasites. In this present study, we aimed to investigate the effect of Giardia duodenalis trophozoites on bovine NETs formation, and to further examine its basic characteristics and molecular mechanisms. Scanning electron microscopy analyses displayed that Giardia duodenalis trophozoites exposure triggered NET-like filamentary structures released by bovine polymorphonuclear leukocytes (PMNs), and many trophozoites were entrapped within these structures. Immunofluorescence analyses illustrated that these structures were mainly composed of DNA, histones, Myeloperoxidase (MPO) and neutrophil elastase (NE), which confirmed the classical characteristics of NETs. NETs quantification showed that Giardia duodenalis trophozoites significantly increased NETs formation, and it is in a dose-dependent manner from 4:1-1:2 ratio of PMN: trophozoites. Furthermore, pharmacological inhibitory experiment indicated that P2X1 receptor and PAD4 were essential for Giardia duodenalis trophozoites-triggered NETs formation. Additionally, LC3B-based immunostaining analyses revealed that autophagy and NETs formation occurred simultaneously in Giardia duodenalis trophozoites-exposed bovine PMN, imply that autophagy may play a key role in Giardia duodenalis trophozoites-triggered bovine NETs. In summary, these findings suggest that NETs formation might have a crucial role in innate host defense against Giardia duodenalis trophozoites. Hence, we call for future molecular investigations not only on Giardia duodenalis trophozoites-triggered NETs but also on its potential role in giardiasis-related pathology in vivo.


Subject(s)
Cattle Diseases , Extracellular Traps , Giardia lamblia , Giardiasis , Receptors, Purinergic P2X1 , Cattle , Animals , Trophozoites , Giardiasis/veterinary
16.
Mol Immunol ; 152: 27-34, 2022 12.
Article in English | MEDLINE | ID: mdl-36244215

ABSTRACT

Citrinin (CTN), a secondary fungal metabolite produced by several Aspergillus, Penicillium, and Monascus genera species, is a toxin with a wide range of biological activities. Neutrophil extracellular traps represent a novel potential mechanism of the neutrophil response to foreign matters, and chicken heterophils can release similar heterophil extracellular traps (HETs). In this study, we aimed to investigate the effect of CTN on HET formation. Density gradient centrifugation was used to isolate chicken peripheral blood heterophils, and then immunofluorescence was used to observe the effects of CTN on HET formation. The mechanisms of HET formation were analyzed using pharmacological inhibitors and quantification of extracellular DNA, and the production of reactive oxygen species was detected with a fluorescent probe. Our results revealed that CTN (50-400 µM) had no cytotoxic effect on heterophils. CTN exposure induced the release of HETs composed of chromatin decorated with histones and elastase, and CTN-triggered HETs were dose- and time-dependent to some extent. Furthermore, CTN increased ROS production and activated p38 and ERK1/2 signaling pathways in heterophils. However, inhibition of the p38 signaling pathway, ERK1/2 signaling pathway, and NADPH oxidase pathway did not block HET formation induced by CTN. Inhibition of peptidyl arginine deiminase 4 (PAD4) enzyme and P2×1 receptor decreased HET formation after CTN stimulation, suggesting that HET formation exposed to CTN was mediated by PAD4 and P2×1 receptor. In conclusion, these findings may suggest a canonical mechanism relevant to the innate immunity caused by mycotoxins in chickens.


Subject(s)
Citrinin , Extracellular Traps , Animals , Chickens , Citrinin/pharmacology , Neutrophils
17.
Front Genet ; 13: 900548, 2022.
Article in English | MEDLINE | ID: mdl-36110214

ABSTRACT

Purposes: We aimed to characterize the USH2A genotypic spectrum in a Chinese cohort and provide a detailed genetic profile for Chinese patients with USH2A-IRD. Methods: We designed a retrospective study wherein a total of 1,334 patients diagnosed with IRD were included as a study cohort, namely 1,278 RP and 56 USH patients, as well as other types of IEDs patients and healthy family members as a control cohort. The genotype-phenotype correlation of all participants with USH2A variant was evaluated. Results: Etiological mutations in USH2A, the most common cause of RP and USH, were found in 16.34% (n = 218) genetically solved IRD patients, with prevalences of 14.87% (190/1,278) and 50% (28/56). After bioinformatics and QC processing, 768 distinct USH2A variants were detected in all participants, including 136 disease-causing mutations present in 665 alleles, distributed in 5.81% of all participants. Of these 136 mutations, 43 were novel, nine were founder mutations, and two hot spot mutations with allele count ≥10. Furthermore, 38.5% (84/218) of genetically solved USH2A-IRD patients were caused by at least one of both c.2802T>G and c.8559-2 A>G mutations, and 36.9% and 69.6% of the alleles in the RP and USH groups were truncating, respectively. Conclusion: USH2A-related East Asian-specific founder and hot spot mutations were the major causes for Chinese RP and USH patients. Our study systematically delineated the genotype spectrum of USH2A-IRD, enabled accurate genetic diagnosis, and provided East Asian and other ethnicities with baseline data of a Chinese origin, which would better serve genetic counseling and therapeutic targets selection.

18.
Arch Toxicol ; 96(11): 2913-2926, 2022 11.
Article in English | MEDLINE | ID: mdl-35962800

ABSTRACT

With the widespread use of copper oxide nanoparticles (CuO-NPs), their potential toxicity to the environment and biological health has attracted close attention. Heterophil extracellular traps (HETs) are an innate immune mechanism of chicken heterophils against adverse stimuli, but excessive HETs cause damage. Here, we explored the effect and mechanism of CuO-NPs on HETs formation in vitro and further evaluated the potential role of HETs in chicken liver and kidney injury. Heterophils were exposed to 5, 10, and 20 µg/mL of CuO-NPs for 2 h. The results showed that CuO-NPs induced typical HETs formation, which was dependent on NADPH oxidase, P38 and extracellular regulated protein kinases (ERK1/2) pathways, and glycolysis. In in vivo experiments, fluorescence microplate and morphological analysis showed that CuO-NPs elevated the level of HETs in chicken serum and caused liver and kidney damage. Meanwhile, CuO-NPs caused hepatic oxidative stress (MDA, SOD, CAT, and GSH-PX imbalance), and also induced an increase in mRNA expression of their inflammatory and apoptosis-related factors (IL-1ß, IL-6, TNF-α, COX-2, iNOS, NLRP3, and Caspase-1, 3, 11). However, these results were significantly altered by DNase I (HETs degradation reagent). In conclusion, the present study demonstrates for the first time that CuO-NPs induce the formation of HETs and that HETs exacerbate pathological damage in chicken liver and kidney by promoting oxidative stress and inflammation, providing insights into immunotoxicity and potential prevention and treatment targets caused by CuO-NPs overexposure.


Subject(s)
Extracellular Traps , Metal Nanoparticles , Animals , Caspases , Chickens , Copper/toxicity , Cyclooxygenase 2 , Deoxyribonuclease I/pharmacology , Interleukin-6 , Liver , Metal Nanoparticles/toxicity , NADPH Oxidases/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Oxides , Protein Kinases , RNA, Messenger , Superoxide Dismutase , Tumor Necrosis Factor-alpha
19.
Fish Shellfish Immunol ; 129: 22-29, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932984

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) are widely used in sunscreens, cosmetics, paint, construction materials, and other products. ZnO-NPs released into the environment can harm aquatic creatures and pose a health risk to humans through the food chain. ZnO-NPs are toxic to fish, but there are few reports on its immunotoxicity on crucian carp (Carassius carassius). In this study, ZnO-NPs increased the biochemical indexes of the liver in serum, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In histopathological observation, many inflammatory cells were filled in the liver's central vein stimulated by ZnO-NPs. Furthermore, ZnO-NPs could increase malondialdehyde (MDA) level, lessen superoxide dismutase (SOD) level, and elevate the level of neutrophil extracellular traps (NETs). However, deoxyribonuclease I (DNase I) alleviated all biochemical indexes and histopathological changes. Immunofluorescence in vitro confirmed that NETs were composed of citrullinated histone 3, myeloperoxidase, and neutrophil elastase. ZnO-NPs-increased NETs were dependent on reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and were also related to partial processes of glycolysis. Our study confirms that ZnO-NPS has a toxic effect on the liver of crucian carp. DNase I can prevent liver damage caused by ZnO-NPs, which provides a new insight into the immunotoxicity of ZnO-NPs to fish.


Subject(s)
Carps , Extracellular Traps , Nanoparticles , Zinc Oxide , Alanine Transaminase , Animals , Aspartate Aminotransferases , Carps/metabolism , Deoxyribonuclease I/pharmacology , Histones , Humans , Leukocyte Elastase/pharmacology , Malondialdehyde , Metal Nanoparticles/toxicity , NADP/pharmacology , Nanoparticles/toxicity , Oxidative Stress , Peroxidase , Reactive Oxygen Species/metabolism , Sunscreening Agents/pharmacology , Superoxide Dismutase/metabolism , Zinc Oxide/toxicity
20.
Eur J Pharmacol ; 932: 175227, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36007605

ABSTRACT

Acute liver injury is a severe clinical syndrome with markedly high mortality and poor prognosis. An accumulating body of evidence has demonstrated that epigenetic mechanisms have essential roles in the pathogenesis of acute liver injury. Lysine-specific demethylase 1 (LSD1) belongs to the amine oxidase superfamily of flavin adenine dinucleotide (FAD)-dependent enzymes, specifically demethylates H3 lysine 4. In the study, we investigated the effects and mechanisms of LSD1 in lipopolysaccharide (LPS)/D-Galactosamine (D-Gal)-induced acute liver injury in mice. Western blot analysis showed that LSD1 phosphorylation and di-methylated histone H3 on lysine 4 (H3K4me2) protein expression were significantly increased after LPS/D-Gal treatment (2.3 and 2.4 times higher than control respectively). GSK-LSD1 2HCl is an irreversible and selective LSD1 inhibitor. Pre-treatment with LSD1 inhibitor alleviated LPS/D-Gal-induced liver damage, decreased serum levels of alanine transaminase and aspartate aminotransferase in mice. Moreover, the LSD1 phosphorylation level in low, medium, and high LSD1 inhibitor groups was lower by a factor of 1.6, 1.9, and 2.0 from the LPS/D-Gal group, respectively. Mechanistically, LSD1 inhibitor further inhibited NF-κB signaling cascades and subsequently inhibited the production of pro-inflammatory cytokine TNF-α, IL-6, and IL-1ß induced by LPS/D-Gal in liver tissues. Furthermore, LSD1 inhibitor upregulated the protein expression of Nrf2/HO-1 signaling pathways, and the activities of related antioxidant enzymes were enhanced. Collectively, our data demonstrated that LSD1 inhibitor protected against the LPS/D-Gal-induced acute liver injury via inhibiting inflammation and oxidative stress, and targeting the epigenetic marker may be a potent therapeutic strategy for acute liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Galactosamine , Alanine Transaminase , Amines/pharmacology , Animals , Antioxidants/pharmacology , Aspartate Aminotransferases , Chemical and Drug Induced Liver Injury/pathology , Cytokines/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/pharmacology , Galactosamine/pharmacology , Histone Demethylases/metabolism , Histone Demethylases/pharmacology , Histones/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Liver , Lysine/metabolism , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidoreductases/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...